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Abstract

A solution method for radiation–conduction transport is developed using complex combination. This method offers

an alternative to the direct temporal integration of the transient radiation–conduction equation for problems with

periodic boundary conditions, where the sustained solution is of interest. A solution is formulated as an expansion

series of temperature fields having frequencies that are multiples of those imposed by the boundary conditions. This

series is shown to converge rapidly for most problems, making it a very efficient technique.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A solution method is developed for combined radi-

ation-conduction transport in an optically gray material

having periodic heating applied at the boundaries. The

transient radiation–conduction equation has been solved

before; for a few examples of these solutions see [1–4].

Here a quasi-steady-state solution is of interest, which

exists after a time long in comparison with the period of

heating. While direct time integration could be used to

obtain this solution, this approach is computationally

expensive. Therefore, a method using complex combi-

nation is proposed to obtain the sustained response of

the material to periodic heating in the presence of both

radiation and conduction transport.

A number of important problems can benefit from

the complex combination method developed here.

Analysis of thermal barrier coatings under the high heat

loads found in modern engines is one example [5,6].

Yttria stabilized zirconia coatings used commercially as

thermal barrier coatings are partially transparent to

thermal radiation [7,8]. The material design of these

coatings is an important area of research, in which im-

proving the thermal performance is an important goal

[9–13]. As the operational temperatures of engines con-

tinue to rise, the radiative component of the heat load

applied to these coatings grows faster than the convec-

tive load. Therefore, the improved optical performance

of these coatings, with respect to thermal radiation, is an

important new issue. The complex combination method

developed here will permit temporal analysis of thermal

barrier coatings in systems such as reciprocating engines.

Previous heat transfer analysis of thermal barrier coat-

ings in diesel engines, for example, was limited to

available steady techniques for mixed conduction–radi-

ation transport [5]. With the complex combination

method, a more accurate description of the transient

thermal performance of these coatings can be realized.

The complex combination method is well developed

for problems of diffusion by conduction [14]. However,

the method has not been applied previously to mixed

radiation–conduction transport because of the nonlinear

nature of this problem. For diffusion by conduction
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alone, with harmonic boundary conditions, the temper-

ature solution is harmonic with the same fundamental

frequency as the boundary conditions. However, by in-

cluding radiation transport, emission and re-absorption

of energy within the material introduces higher order

frequencies into the temperature solution. For the case

in which the medium is gray, the spectrally integrated

emission intensity is proportional to the fourth power of

temperature T 4. By virtue of this power law, the higher

order frequencies can be directly express as multiples of

the fundamental frequency x. For example, the tem-

perature described by the combination of a steady

temperature T and a single frequency temperature eTTx

causes energy to radiate into four frequencies: 1x, 2x,

3x, and 4x, through terms related to T
3eTTx, T

2eTT 2
x, T eTT 3

x

and eTT 4
x, respectively. Once these frequencies are present

in the radiative field, they will appear in the temperature

solution due to re-absorption of radiation within the

medium. Consequently, the temperature solution for

mixed conduction–radiation transport with harmonic

boundary conditions will be nonharmonic. To apply

complex combination, a solution for T ð~xx; tÞ is sought by

decomposing the temperature field into a series of fields

with frequencies that are multiples of the fundamental

frequency imposed by the boundary condition.

For each frequency in the expanded solution, tem-

perature has a prescribed temporal form that allows for a

complex number representation. The only unknowns are

the amplitude and phase of the temperature field at each

frequency. However, the solution procedure is compli-

cated by the fact that each temperature frequency is

coupled to other frequencies through the radiative term

in the transport equation. Furthermore, for any finite

number of temperature frequencies N , the radiative power

law introduces 4N frequencies into the solution. There-

fore, a series solution will converge only if the amplitudes

of higher order temperature frequencies become small.

Working in favor of this is the heat capacity of the ma-

terial, which naturally lends to increased dampening as

the frequency of temperature component increases.

2. Formulation

The transient radiation–conduction transport equa-

tion can be written in the form [15]

Nomenclature

a absorption coefficient (1/m)

aj real tensor coefficient (Eq. (12))
~bbj complex tensor coefficient (Eq. (12))

cj real tensor coefficient (Eq. (12))

C heat capacity (K/kgK)
~ddj complex tensor coefficient (Eq. (12))

E1 dimensionless exponential integral function

E2 dimensionless exponential integral function

Ir total radiation intensity (W/m2 sr)

k thermal conductivity (W/mK)

L plane-wall thickness (m)

n real part of refractive index

N number of frequencies in expansion

Nu Nusselt number Nu ¼ hL=k
Q dimensionless conduction flux Q ¼ qc=

ð4n2rT 4
r Þ

qc conduction flux (W/m2)

~qqr radiation flux (W/m2)

S dimensionless radiation source term (Eq.

(3b))eSSnX nX frequency of radiation source term (Eq.

(9))

T temperature (K)

Tr characteristic reference temperature (K)

T steady temperature component (K)eTTnx nx frequency of temperature (K)

t time (s)

x coordinate (m)

Greek symbols

g dimensionless coordinate g ¼ x=L
j dimensionless conduction–radiation para-

meter j ¼ k=ð4n2rT 3
r LÞ

k dimensionless optical thickness k ¼ aL
h dimensionless temperature h ¼ T=Tr

�hh0 dimensionless steady temperature compo-

nent
~hhnX nX frequency of dimensionless temperature
~hh4
nX nX frequency of h4

q density

r Stefan–Boltzmann constant (5:67� 10�8 W/

m2 K4)

s dimensionless time s ¼ 4n2rT 3
r t=ðqCLÞ

X dimensionless fundamental frequency X ¼
qCLx=ð4n2rT 3

r Þ
x frequency (dx unit solid angle)

Subscripts

a front fluid

b back fluid

J mesh size

j node number

nX frequency component

Superscript

m iteration number
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qCðoT=otÞ � kr2T þ ~rr �~qqr ¼ 0; ð1aÞ

~rr �~qqr ¼ a 4rT 4

�
�
Z 4p

0

Ir dx

�
: ð1bÞ

Transient storage of energy is related to the heat ca-

pacity of the material through the first term of Eq. (1a).

The second term reflects conduction transport, and ra-

diation transport is expressed as a spectrally integrated

source in the third term. This source term is the diver-

gence of the radiative flux expressed in Eq. (1b), and

depends upon the difference between the local powers of

emission and irradiant absorption. The magnitude of

local irradiant absorption depends upon radiation that

evolves from all other locations within the material do-

main and from outside the domain boundaries.

To simplify the presentation of the complex combi-

nation solution for radiation–conduction transport, a

one-dimensional plane-wall problem is considered which

is shown schematically in Fig. 1. Energy is transferred

from a source through the front boundary and trans-

ferred to a sink through the back boundary. The fluid

temperatures on either side on the plane-wall are

used to specify a blackbody source and sink for radia-

tion heat transfer. The front and back surfaces are as-

sumed reflectionless to thermal radiation, and real

part of the refractive index n of the fluids are matched

to the plane-wall. Boundary conditions on the temper-

ature field must also be applied to the plane-wall at

each surface. The usual possibilities are to specify

the temperature, conduction flux, or convection coeffi-

cient. In this work, heat is introduced by a conduction

flux or specified temperature boundary condition at x ¼
0 (Eqs. (2a,b)) and removed with a convection or spec-

ified temperature boundary condition at x ¼ L (Eqs.

(2c,d))

BCðx ¼ 0Þ:� ~rrxT �~nn ¼ qcðtÞ=k or T ¼ TaðtÞ;
ð2a;bÞ

BCðx ¼ LÞ:� ~rrxT �~nn ¼ ðh=kÞðT � TbðtÞÞ or

T ¼ TbðtÞ: ð2c;dÞ

The boundary conditions related to heat flux con-

cern conduction heat transfer only. Radiative loading

through the boundaries of the wall is reconciled in the

radiative source term given by Eq. (1b).

The problem expressed by Eqs. (1) and (2) may be

nondimensionalized as follows. A characteristic refer-

ence temperature of the problem is used to nondimen-

sionalize the dependent temperature variable h ¼ T=Tr.

The independent variables for space and time are non-

dimensionalized as g ¼ x=L and s ¼ 4n2rT 3
r t=ðqCLÞ, re-

spectively. In terms of these variables, the governing

dimensionless equation for temperature in the plane-

wall becomes [15]

oh=os � jr2
gh þ kS ¼ 0; ð3aÞ

S ¼ h4ðgÞ � 1

2
h4
aE2ðkgÞ

�
þ h4

bE2ðk½1� g
Þ

þ k
Z 1

0

h4ðg0ÞE1ðkjg0 � gjÞdg0
�
: ð3bÞ

Coefficients related to conduction and radiation trans-

port appear in the nondimensional terms: j ¼ k=ð4n2 �
rT 3

r LÞ and k ¼ aL. The conduction–radiation parameter

j reflects the importance of conduction relative to ra-

diation transport, and k is the optical thickness of the

plane-wall. Eq. (3b) assumes a nonscattering medium,

and E1 and E2 are exponential integral functions.

Terms in Eq. (3a) retain the same interpretation as in

dimensional form. Eq. (3b) expresses the nondimen-

sional radiant energy related to the source term, in

which the leading h4 reflects emission. Absorption of

radiation originating from outside the plane-wall is as-

sociated with the emissive powers of two bounding fluids

at temperatures of ha and hb, while absorption of radi-

ation originating from locations within the plane-wall is

associated with the final integral term.

In nondimensional form, the boundary conditions

given by Eqs. (2a–d) become

BCðg ¼ 0Þ:� ~rrgh �~nn ¼ Q=j or h ¼ ha; ð4a;bÞ

BCðg ¼ 1Þ:� ~rrgh �~nn ¼ Nuðh � hbÞ or h ¼ hb:

ð4c;dÞ

The specified heat flux at the front boundary in nondi-

mensional form becomes Q ¼ qc=ð4n2rT 4
r Þ. The Nusselt

number Nu ¼ hL=k appears in the convection condition

in Eq. (4c).

The boundary conditions impose a fundamental

frequency x on the solution. Although this analysis can

be extended to allow for more than one, it is assumed

here that only one fundamental frequency exists. In

x=0 x=L

conduction
&

radiation

T(x,t)

Ta

Tb

front BC
Tx

∆

T or

back BC
Tx

∆

T or

Fig. 1. One-dimensional plane-wall problem schematically

showing radiative fluids and boundary conditions considered.

The front and back surfaces are reflectionless to thermal radi-

ation, and real part of the refractive index n of the fluids are

matched to the plane-wall.
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nondimensional form, the fundamental frequency is

X ¼ xt=s ¼ qCLx=ð4n2rT 3
r Þ. A solution to the problem

stated by Eqs. (3) and (4) is sought through an expan-

sion of temperature fields having frequencies that are

multiples of the fundamental frequency

hðg; sÞ ¼ �hh0 þ ~hhXe
iXs þ ~hh2Xe

i2Xs þ � � � þ ~hhNXe
iNXs: ð5Þ

Whenever temperature is represented by a complex

number, as is the case in Eq. (5), it is implied that only

the real part is taken. Notice that the coefficients ~hhnX

(06 n6N ) are spatial variables only, and are complex

with the exception of n ¼ 0. When Eq. (5) is substituted

into the governing partial differential equation (3a), the

result can be organized into a system of ordinary dif-

ferential equations, each equation representing one fre-

quency of the temperature field expansion

jr2
g

�hh0

~hhX

~hh2X

..

.

~hhNX

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
� iX

0

1~hhX

2~hh2X

..

.

N ~hhNX

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼ k

S0eSSXeSS2X

..

.

eSSNX

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
..
.

eSS4NX

9=;truncated

ð6Þ

For any finite number of temperature frequencies N ,

radiation transfer will introduce terms with up to 4N
times the fundamental frequency. Therefore, terms with

frequencies greater than NX must be dropped from the

system of equations to be solved (Eq. (6)). It remains to

be shown that if N is chosen sufficiently large, the

truncated terms are negligible.

With the exception of the first equation, the solution

to each equation in Eq. (6) is a complex temperature

field that contains information about the amplitude and

the phase of the time varying field for one frequency.

The first equation describes the steady component of the

solution and therefore is real rather than complex.

One complication in setting up the system given by

Eq. (6) is that the radiation term for each frequency

must be calculated from the nonlinear Eq. (3b), which

depends on the fourth power of the temperature field.

With temperature h expressed as the expansion given in

Eq. (5), h2 can be expressed in an expansion of 2N fre-

quencies

h2 ¼
XN
n¼0

XN
m¼n

ð1� dmn=2Þ½~hhmX
~hhnXe

iðmþnÞXt þ ~hh

nX
~hhmXe

iðm�nÞXt
:

ð7Þ

In Eq. 7, ~hh

nX and ~hh


mX are complex conjugates of the nth
and mth frequencies in Eq. (5), and dmn is the Kronecker

delta operator. Using the expression for h2, h4 can be

expressed as the expansion of 4N frequencies

h4 ¼
X2N
n¼0

X2N
m¼n

ð1� dmn=2Þ½~hh2
mX

~hh2
nXe

iðmþnÞXt þ ~hh2
mX

~hh2

nXe

iðm�nÞXt
:

ð8Þ

Using Eq. 8 to identify each term ~hh4
nX in the expression

for h4, the radiation term for each frequency is calcu-

lated from

eSSnX ¼ ~hh4
nXðgÞ �

1

2
~hh4
a;nXE2ðkgÞ

�
þ ~hh4

b;nXE2ðk½1� g
Þ

þ k
Z 1

0

~hh4
nXðg0ÞE1ðkjg0 � gjÞdg0

�
: ð9Þ

It should be noted that ~hh4
nX is the nth frequency in the

expansion of h4 and not the fourth power of the nth
frequency of h. The terms ~hh4

a;nX and ~hh4
b;nX relate to the

emissive powers of the two bounding fluids and are

evaluated in a similar manner to ~hh4
nX.

To complete the problem formulation, the boundary

conditions are expressed in terms of the decomposed

temperature field

BCðg ¼ 0Þ : � ~rrg
~hhnX �~nn ¼ eQQnX=j or ~hhnX ¼ ~hha;nX;

ð10a;bÞ

BCðg ¼ 1Þ : � ~rrg
~hhnX �~nn ¼ Nuð~hhnX � ~hhb;nXÞ or

~hhnX ¼ ~hhb;nX: ð10c;dÞ

The heat flux Q and specified temperatures ha and hb

must have a finite number of frequencies associated with

them. Boundary conditions are harmonic if eQQX is the

highest nonzero frequency term associated with Q, and
~hha;X and ~hhb;X are the highest nonzero frequency terms

associated with the boundary fluid temperatures.

3. Method of solution

The problem is cast into a finite difference form to

obtain a numerical solution. Because the governing

equation is nonlinear, an iterative approach to the so-

lution is used. Eq. (6) is written as

jr2
g
~hhmþ1
nX � iXn~hhmþ1

nX ¼ keSSmþ1
nX ð11Þ

to solve for the nX temperature component resulting

from the mþ 1 iteration. Eq. (11) can be expressed in

terms of the known temperature field from the mth it-

eration using ~hhmþ1
nX ¼ ~hhm

nX þ D~hhm
nX, and the change in

temperature field at each frequency D~hhnX solved for. The

change in the radiation term is linearly approximated byeSSmþ1
nX � eSSm

nX þ ðeSSm
nX=d

~hhnXÞD~hhnX. After being expressed in

terms of the temperature change at each node, Eq. (11) is

discretized by expressing the second derivative with a
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central difference scheme. This yields a tridiagonal sys-

tem of equations

~bb0 c0

a1
. .
. . .

.

. .
. . .

.
cJ�2

aJ�1
~bbJ�1

266664
377775

D~hh0

D~hh1

..

.

D~hhJ�1

26664
37775

m

nX

¼

~dd0

~dd1

..

.

~ddJ�1

26664
37775

m

nX

: ð12Þ

For uniformly distributed nodes, the coefficients to Eq.

(12) for interior nodes 16 j6 J � 2 are

aj ¼
�j

ðDgÞ2
; ~bbj ¼

2j
Dg2

þ iXnþ k
deSSm

nX

dhnX

�����
j

; cj ¼
�j

ðDgÞ2

ð13a–cÞ

~ddj ¼ j

~hhm
nX

���
jþ1

� 2~hhm
nX

���
j
þ ~hhm

nX

���
j�1

ðDgÞ2
� iXn~hhm

nX

���
j
� keSSm

nX

���
j
:

ð13dÞ

For j ¼ 0, the heat flux boundary condition can be im-

plemented with

~bb0 ¼
j

Dg2
þ iXn

2
þ k

2

deSSm
nX

dhnX

�����
0

; c0 ¼
�j

ðDgÞ2
; ð14a;bÞ

~dd0 ¼
eQQnX

Dg
þ j

~hhm
nX

���
1
� ~hhm

nX

���
0

ðDgÞ2
� iXn

2
~hhm
nX

���
0
� k

2
eSSm
nX

���
0
: ð14cÞ

Alternatively, a specified constant temperature bound-

ary condition can be implemented with

~bb0 ¼ 1; c0 ¼ 0; ~dd0 ¼ ~hha;nX: ð15a–cÞ

For j ¼ J � 1, the convection boundary condition can

be implemented with:

aJ�1 ¼
�j

ðDgÞ2
; ð16aÞ

~bbJ�1 ¼
j
Dg

Nu
�

þ 1

Dg

�
þ iXn

2
þ k

2

deSSm
nX

dhnX

�����
J�1

ð16bÞ

~ddJ�1 ¼
j
Dg

Nu ~hhb;nX

�
� ~hhm

nX

���
J�1

�

þ j
~hhm
nX

���
J�2

� ~hhm
nX

���
J�1

ðDgÞ2
� iXn

2
~hhm
nX

���
J�1

� k
2
eSSm
nX

���
J�1

:

ð16cÞ

Alternatively, a specified constant temperature back

boundary condition can be implemented with

aJ�1 ¼ 0; ~bbJ�1 ¼ 1; ~ddJ�1 ¼ ~hhb;nX: ð17a–cÞ

The radiation derivative term, appearing in Eqs. (13b),

(14a) and (16b), is evaluated with respect to a local

change in a temperature. Therefore, ðdeSSnX=d~hhnXÞ ¼
ðd~hh4

nX=d
~hhnXÞ, which can be evaluated from Eq. (8) as

deSSnX

d~hhnX

¼
X2N
m¼0

1� dð2mÞn
2

� �
~hh2
mX

dh2ðn�mÞX
d~hhnX

þ ~hh2
ðn�mÞX

dh2mX

d~hhnX

� �
ðif nP 2mÞ

þ
1� d0n

2

� �
~hh2

mX

dh2ðnþmÞX
d~hhnX

þ ~hh2
ðnþmÞX

dh2
mX

d~hhnX

� �
ðif nþ m6 2NÞ

8>>>>>>><>>>>>>>:
ð18aÞ

dh2
kX

d~hhnX

¼

~hhðk�nÞX ðif kP nÞ
þ
ð1� d0k=2Þ~hh


ðn�kÞX ðif k6 nÞ
þ
ð1� d0k=2Þ~hhðkþnÞX ðif k þ n6NÞ

8>>>><>>>>: : ð18bÞ

The system of equations (12) is solved numerically for

a discretized domain of 200 nodes. The integral in Eq.

(9) can be evaluated numerically by Gaussian integra-

tion. Since the solution is obtained iteratively, conver-

gence will depend on the quality of the initial guess

at the temperature distribution through the plane-wall.

Generally, the initial guess is that the steady and 1X
temperature components vary linearly through the plane-

wall between their respective boundary values and higher

frequency components are all zero.

4. Results

To validate the numerical implementation of this

method, a test case is considered in which an optically

thin plane-wall is heated by blackbody radiation from

the fluid at a nonconstant temperature ha adjacent to the

front surface. No conduction of heat occurs between

the front surface of the plane-wall and the fluid, qc ¼ 0.

The back surface of the plane-wall and the adjacent fluid

are held at zero temperature hðg ¼ 1Þ ¼ hb ¼ 0. In the

optically thin limit, the radiation term, Eq. (3b), becomes:

Sjk!0 ¼ � h4
a

2
: ð19Þ

Notice that in this limit, radiative heating becomes

uniform and emission becomes negligible inside the

plane-wall.

A solution to the problem stated is sought through

an expansion of temperature with N ¼ 4 frequencies. An

exact solution exists because radiation transfer no longer

depends on emission from within the plane-wall (for

n > 4, eSSnX ¼ 0). For each component of the temperature

field, an analytic solution to Eq. (6) is found subject to

the boundary condition equations. (10a) and (10d)

�hh0 ¼
k�hh4

a;0

4j
ð1� g2Þ; ð20aÞ
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~hhnX ¼ ik
2X

~hh4
a;nX

n
coshðg

ffiffiffiffiffiffiffiffiffiffiffiffiffi
inX=j

p
Þ

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
inX=j

p
Þ

"
� 1

#
: ð20bÞ

From Eqs. (20a,b), the final solution is constructed using

Eq. (5) with N ¼ 4.

For the test problem, the fluid adjacent to the front

surface has a steady and a 1X temperature component of

equal unit amplitude, �hha;0 ¼ ~hha;X ¼ 1. For this, the ex-

panded terms for h4
a used in Eqs. (20a,b) are �hh4

a;0 ¼ 35=8,
~hh4
a;X ¼ 7, ~hh4

a;2X ¼ 7=2, ~hh4
a;3X ¼ 1 and ~hh4

a;4X ¼ 1=8 (using

Eqs. (7) and (8)). Taking the fundamental frequency to

be X ¼ 1 and the conduction–radiation parameter to be

j ¼ 1, the analytic solution is compared with a numer-

ical solution using N ¼ 16 temperature frequencies. Fig.

2 shows the amplitude of the first five temperature

components as a function of optical thickness for both

the numerical and analytic solutions. For an optical

thickness less than k ¼ 0:01 the numerical results are

indistinguishable from the analytical result given by Eqs.

(20a,b). The agreement worsens as the optical thickness

increases, because the validity of the analytical result

begins to fail. The test problem demonstrates that in the

optically thin limit, the numerical results are correct.

This validates the numerical implementation of the

complex combination solution for conduction transport

with spatially uniform radiative heating. However, the

implementation of radiative emission and absorption of

radiation originating from locations within the plane-

wall has yet to be tested.

To validate calculations of emission and re-absorp-

tion of radiation in the medium, a second test case is

considered in which the steady temperature distribution

across the plane-wall is found. Both front and back

surface temperatures are fixed at the fluid tempera-

tures hðg ¼ 0Þ ¼ ha and hðg ¼ 1Þ ¼ hb. Conduction and

blackbody radiation of heat is exchanged between the

plane-wall and both fluids. Although the fluid tempera-

tures are steady, this problem can only be solved nu-

merically. For comparison with the results found in [16],

the fluid temperatures are set as ha ¼ 1:0 and hb ¼ 0:1,
and the optical thickness as k ¼ 1. Eq. (6) is solved for

the steady solution subject to the boundary conditions

of Eqs. (10b) and (10d). Fig. 3 shows the numerical re-

sults over a wide range of the conduction–radiation

parameter j. In the limit that j ! 1, the temperature

distribution becomes linear between the two boundary

temperatures. In this limit, radiation transport is negli-

gible and the solution for simple conduction transport

is revealed. The more interesting cases arise when the

conduction–radiation parameter becomes small, making

radiation transport significant. For very small values of

j, temperature ‘‘slip’’ is observed in the solution at the

boundaries. Over the entire range of j, the results shown

in Fig. 3 are in agreement with those reported in [16].

This validates the numerical implementation of steady

radiation–conduction transfer of heat through the

plane-wall.

To study the complex combination method for a

more general case, a problem is considered in which no

0.01 0.50.1
10-4

10-3

10-2

10-1

100

| θ
n(

η=
0)

 |

λ

n=2

n=4

n=3

n=1
n=0

Eqns. (20a,b)
numerical soln.

Fig. 2. Comparison of analytic solution valid in the limit of an

optically thin plane-wall with numerical results. The first five

temperature components are shown as a function of optical

thickness.
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Results are shown over a wide range of the conduction–radiation

parameter j.
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radiation enters the plane-wall from either boundary,

but originates from emission within the wall. Convection

with Nu ¼ 1 occurs from the back surface to fluid with

zero temperature. A conduction heat flux is imposed on

the front surface that has a steady and a 1X component

of equal amplitude, Q0 ¼ eQQX ¼ 1. The fundamental

frequency is X ¼ 1, the conduction–radiation parameter

is j ¼ 1, and the optical thickness of the plane-wall is

k ¼ 1.

A solution is sought using an expansion of temper-

ature with 16 frequencies. Fig. 4 shows the solution in

terms of the amplitude of different frequency compo-

nents as they vary spatially across the plane-wall. The

steady component has the largest amplitude, and each

component thereafter decreases in amplitude with in-

creasing frequency. By a frequency of 7X, the tempera-

ture amplitude is 10�4 of that at the fundamental

frequency, indicating that higher frequencies are not

needed. As g ! 0, the slopes in temperature approach

unity for the steady and the 1X fields, as imposed by the

boundary condition. In contrast, at the same boundary,

the slopes in temperature of the 2X and higher fre-

quencies are zero, which is also imposed by the bound-

ary condition.

Unlike a pure conduction problem, the spatial vari-

ation of the steady temperature field shown in Fig. 4 is

nonlinear because of the change in relative contribution

of conduction and radiation to transport over the

thickness of the plane-wall. Due to the heat capacity of

the material, the amplitude of the transient components

of the solution decay more rapidly with distance from

the heat source than the steady solution. However, ra-

diation transfer increases the thermal penetration depth

relative to conduction alone.

The complex temperature components can be put

back into the time domain using Eq. (5). In Fig. 5, the

temporal response at the back surface is shown as a

function of time for a few frequency components indi-

vidually, then as a complete solution. Again the tem-

perature amplitude of individual frequency components

decays with increasing frequency, as shown in Fig. 5(a).

The complete solution shown in Fig. 5(b) is constructed

by superposition of the individual frequency compo-

nents using Eq. (5). It is interesting to note that the

elevated temperature broadens as a result of mixed

radiation–conduction transport having two different

timescales. In contrast, a process of diffusion by conduc-

tion alone would be symmetric about the mean tem-

perature value.

In Fig. 6, the back surface temperature is analyzed

for temporal changes resulting from the number of fre-

quencies used in the solution. As the number of tem-

perature frequencies N representing the solution goes to

infinity, the truncated radiation terms in Eq. (6) should

become negligible. In going from an approximate har-

monic solution with N ¼ 1 to an approximate solution

with N ¼ 2 there is a marked shift in phase. With as few

as N ¼ 3 temperature frequencies the solution becomes

indistinguishable in the figure from that with N ! 1. It

should be noted that although the solution with N ¼ 1 is
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Fig. 4. Amplitude variation across the plane-wall of the first

eight temperature frequency components. A harmonic con-

duction heat flux is imposed on the front surface Q0 ¼ eQQX ¼ 1,

and convection occurs from the back surface to fluid with zero

temperature.
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harmonic, it still contains an approximate contribution

of radiation transport, and is not equivalent to the

harmonic solution obtained from diffusion by conduc-

tion alone. To illustrate this, Fig. 6 also contains the

analytic solution of the same problem without radiation

transport. For pure conduction, the nonzero tempera-

ture coefficients of Eq. (5) that describe the solution at

the back surface are

�hh0ðg ¼ 1Þ ¼
�QQ0

jNu
; ð21aÞ

~hhXðg ¼ 1Þ ¼
~QQX=j

Nu � coshð
ffiffiffiffiffiffiffiffiffiffi
iX=j

p
Þ þ

ffiffiffiffiffiffiffiffiffiffi
iX=j

p
� sinhð

ffiffiffiffiffiffiffiffiffiffi
iX=j

p
Þ
:

ð21bÞ

With radiation, the overall temperature in the plane-wall

is lower than without due to radiative loss of energy.

Additionally, the back surface temperature maximum

occurs much earlier with radiation than without.

In general, the percent error in the approximated

solution hðN ; g;XsÞ constructed from N temperature

frequencies depends upon the position and time at which

the solution is evaluated. An average percent error in the

solution can be defined as

herrðNÞh i ¼ 100�
Z 2p

0

dðXsÞ
2p

�
Z 1

0

dg
refhðN ; g;XsÞg
refhð1; g;XsÞg

���� � 1

����; ð22Þ

where hð1; g;XsÞ is the solution for N ! 1. Fig. 7

shows the average percent error in the solution as a

function of the number of temperature frequencies used.

Eq. (22) is evaluated with N ! 1 represented by

N ¼ 32. Fig. 7 illustrates that the size of N required

for an acceptably accurate solution depends on the value

of the conduction–radiation parameter j, the optical

thickness of the plane-wall k, and the fundamental fre-

quency of the heating source X. In this figure, only one

parameter is varied from unity at a time.

One expects that for a large value of the conduction–

radiation parameter j, the solution will reflect well a

harmonic conduction problem that can be obtained with

N ¼ 1. For j ¼ 10, Fig. 7(a) shows that the average

percent error in the solution for N ¼ 1 is less than 1%.

For 1P jP 0:1, N ¼ 3 is required for comparably ac-

curate solutions. Over this range of j, the solution de-

pendence on N remains relatively similar.

The optical thickness has an interesting effect on the

solution. As k ! 0 both emission and re-absorption of

radiation go to zero. In this limit, transport is dominated

by conduction and the solution becomes harmonic. This

trend is seen in Fig. 7(b). For 16 k6 10 the solution

dependence on N remains relatively similar, and the

number of temperature frequencies required to obtain

an average error less than 1% is N ¼ 3.

It was seen that temperature components in the so-

lution decrease in amplitude with increasing frequency.

Furthermore, increasing the fundamental frequency X
will increase all the expansion frequencies. As a conse-

quence, the required number of temperature frequencies

used in the solution will decrease as the fundamental

frequency increases. This trend is shown in Fig. 7(c). For

X ¼ 10 the solution is virtually harmonic with the

average error being just above 0.1% when N ¼ 1. How-

ever, when X ¼ 0:1 the number of temperature frequen-

cies required to obtain an average error less than 0.1% is

N ¼ 10. The cumulative information in Fig. 7 reveals

that with as few as N ¼ 4 temperature frequencies, sat-

isfactory solutions can be obtained if the fundamental

frequency is X P 1 irrespective of the conduction–radi-

ation parameter j and the optical thickness k of the

plane-wall.

Until this point it has been assumed that all bound-

ary conditions are harmonic. However, this is not a

constraint of the complex combination solution method.

In general any arbitrary periodic function, represented

as a Fourier expansion, can be applied as one or more of

the boundary conditions without changing the current

formulation. Consider another problem in which no

radiation enters the plane-wall from the boundaries, and

convection with Nu ¼ 1 occurs from the back surface to

fluid with zero temperature. Although the front fluid

temperature is set to zero to eliminate radiation, a saw-

tooth temperature boundary condition is applied to the

front surface having an amplitude that varies between 0
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Fig. 6. The back surface conduction–radiation solution ana-

lyzed for temporal changes resulting from the number of tem-

perature frequencies used. Also shown is the conduction

solution without radiation transport. The problem conditions

are the same as in Figs. 4 and 5.
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and 1, with a period of X ¼ 1. This function is repre-

sented in the form of Eq. (5) with N ! 1 and constant

coefficients given by

�hha;0 ¼
1

2
; ~hha;nX ¼ �4=ðnpÞ2; odd n;

0; even n:

�
ð23a;bÞ

A reasonable representation of the saw-tooth function

requires only a finite number of terms, since this series

converges reasonably fast. If a sufficiently large number

of terms are used to express the boundary condition, it

is not necessary to expand further the number of terms

for the temperature solution in the plane-wall (as is

generally the case due to the multiplicative effect of

radiation).

A solution is sought for the temperature distribution

in the plane-wall with optical thickness k ¼ 1 using an

N ¼ 50 frequency expansion of temperature. The large

number of frequencies used is for good temporal defi-

nition near the saw-tooth temperature boundary con-

dition. Fig. 8 shows the time dependence of temperature

at the front and back surfaces of the plane-wall for

different values of the conduction–radiation parameter

j. At the front surface, temperature follows the specified

saw-tooth temperature boundary condition. However,

at the back surface two points are observed. First, there

is a phase delay in the back surface temperature that

results from the finite time required for conduction and

radiation to transport energy through the plane-wall.

This phase delay grows longer as transport is inhibited

by reducing the conduction–radiation parameter j,
which is accompanied by a reduction in amplitude.

Second, the temporal definition of the saw-tooth shape

at the back surface degrades as j is reduced. Although

diffusion by conduction alone degrades the saw-tooth

shape as one moves away from the front boundary, the

second observation illustrates that radiation can accel-

erate this effect.

Recall that in Fig. 6 the temperature at the back

surface is advanced in phase by the contribution of ra-

diation to the overall transport of energy. This makes

sense since radiation enhances the penetration of heat

into the plane-wall over conduction transport alone.

However, in Fig. 8 it is observed that the phase of the

temperature field at the back surface is retarded as a

consequence of the conduction–radiation parameter j
decreasing (radiation transport becoming more domi-

nate). The explanation for this is found in the decom-

posed temperature field. When j decreases, the 1X
temperature frequency amplitude decreases because of a

loss of conduction transport. However, the 2X tempera-

ture frequency increases because it originates through

the absorption of emission originating from within the

plane-wall, which is a process that strengthens as j de-

creases. Consulting Fig. 5, it is seen that if the 1X tem-

perature frequency amplitude decreases as the 2X
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temperature frequency increases, the phase of the com-

plete temperature will shift back in time.

Fig. 9 shows the solution for the saw-tooth boundary

condition problem in terms of the amplitude of different

frequency components as they vary spatially across the

plane-wall. The relatively strong components to the so-

lution are the steady and odd frequencies of 1X, 3X, 5X,

and 7X. Even frequencies in this solution are weak due

to their absence in the boundary condition, and exist

only because of the nonlinear radiative coupling of en-

ergy into these frequencies. The strongest even frequency

is 2X, with an amplitude of comparable importance to

9X in the odd frequencies sequence. The even frequen-

cies and the odd frequencies below 7X individually

contribute amplitudes of the order of 0.1% of the full

solution. Near the surface, the high odd frequency

components constructively conspire to give good tem-

poral definition to the saw-tooth temperature boundary

condition. However, away from the surface, the tem-

perature components in the lower panel of Fig. 9 offer

little to the total solution.

5. Summary

A mixed-mode model for radiation and conduction

transport has been developed using complex combina-

tion to solve problems with periodic boundary condi-

tions. Implementation of the model was verified by

comparisons with an analytic solution valid for a plane-

wall in the optically thin limit, and with previously es-

tablished steady-state numerical solutions for a plane-

wall with greater opacity. Solutions were expressed as an

expansion series of temperature fields having frequencies

that are multiples of those imposed by the boundary

conditions. These solutions were shown to converge with

as few as N ¼ 4 temperature frequencies when the fun-

damental frequency X ¼ qCLx=ð4n2rT 3
r Þ is of order

unity or greater. The generality of the method was then

illustrated by considering a problem having a non-har-

monic boundary condition. This demonstrated the rel-

ative ease with which the complex combination method

can be used to analyze any mixed radiation–conduction

transport problem with cyclic thermal loading.
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